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Abstract The matching energy of a graph was defined as the sum of the absolutevalues of zeros of its matching polynomial. A bicyclic graph is a connected graph inwhich the number of edges equals the number of vertices plus one. In this paper,some detailed results on ordering the bicyclic graphs according to their matchingenergy are obtained.
Keywords Bicyclic graph; matching energy; k-matching
AMS subject classifications 05C50

1 Introduction

All graphs in this paper are finite, simple and undirected. A matching in a graph is a set
of pairwise non-adjacent edges, and by mk(G) we denote the number of k-matchings of a
graph G. It is both consistent and convenient to define m0(G) = 1. Let G be a graph with n
vertices. The matching polynomial of the graph G is defined as

α(G,x) = ∑
k≥0

(−1)kmk(G)xn−2k.
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98 Li Zou, Hong-Hai Li
For convention, mk(G) = 0 for k < 0 and k > bn/2c, where b · c denotes the floor
function. For any graph G, all the zeros of α(G,x) are real-valued and the theory
of matching polynomial is well elaborated in [3, 4]. Recently, Gutman and Wagner [8]
introduced the matching energy of a graph G, denoted by ME(G) and defined as

ME(G) =
2
π

∫
∞

0

1
x2 ln

[
∑
k≥0

mk(G)x2k
]

dx, (1)

which coincides with the Coulson-type integral formula for the energy when the graph
under consideration is a tree. Meanwhile, as mentioned in [8], the following formula can
be also considered as the definition of matching energy.

Let G be a simple graph, and let µ1,µ2, . . . ,µn be the zeros of its matching polynomial.
Then

ME(G) =
n

∑
i=1
|µi|.

The integral on the right side of (1) is increasing in all the coefficients mk(G). This
means that if two graphs G and G′ satisfy mk(G) ≤ mk(G′) for all k ≥ 1, then ME(G) ≤
ME(G′). If, in addition, mk(G) < mk(G′) for at least one k, then ME(G) < ME(G′). It
then motivates the introduction of a quasi-order �, defined by

G� H⇐⇒ mk(G)≥ mk(H), for all non-negative integers k.

If G� H and there exists some k such that mk(G)> mk(H), then we write G� H. By
this, we have G � H ⇒ ME(G) ≥ ME(H) and G � H ⇒ ME(G) > ME(H). From this
fact, one can readily deduce the extremal graphs for matching energy.

A connected graph with n vertices and n (resp. n+ 1, n+ 2) edges is called unicyclic
(resp. bicyclic, tricyclic). In [8], Gutman and Wagner characterized the extremal graphs
among all graphs of order n, unicyclic graphs on n vertices with extremal matching
energy, and bipartite graphs with n vertices and maximum matching energy. Li and Yan
[12] characterized the connected graph with given connectivity (resp. chromatic number)
which has maximum matching energy. Recently, Chen and Sheng et al. [1, 2, 10] further
investigated unicyclic graphs, bicyclic graphs and tricyclic graphs in terms of matching
energy.

Denote by Bn the set of all connected bicyclic graphs of order n. We now define
two special classes of bicyclic graphs. Let ∞n(r,s) denote the graph obtained by the
coalescence of the two end vertices of a path Pn−r−s+2 with one vertex of two cycles Cr and
Cs respectively, and θ(r,s, t) the graph obtained by fusing two triples of pendent vertices
of three paths Pr+2, Ps+2 and Pt+2 to two vertices, as shown in Figure 1. The distance of
two cycles Cr and Cs in G is defined as dG(Cr,Cs) = min{dG(x,y) | x ∈V (Cr), y ∈V (Cs)},

International Journal of Graph Theory and its Applications 1 (2015) 97–110



On Matching Energy of Bicyclic Graphs 99
sometimes written as dG for short. Note that dG(Cr,Cs) = 0 if Cr and Cs have a common
vertex, e.g. for G = ∞n(r,s) such that s = n− r+1. For any graph G ∈Bn, G must contain
an induced subgraph in such form of either ∞n(r,s) or θ(r,s, t), for some non-negative
integers r,s, t. Then the set Bn can be partitioned into two subsets B1

n and B2
n, where B1

n is
the set of all bicyclic graphs which contain a subgraph of the form ∞n(r,s), and B2

n is the
set of all bicyclic graphs which contain a subgraph of the form θ(r,s, t).
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Figure 1.

Ji, Li and Shi [9] characterized the bicyclic graphs with the minimal and maximal
matching energy. In this paper, we present some more elaborate results on ordering the
bicyclic graphs in terms of their matching energy and consequently the maximum bicyclic
graph is obtained.

2 Preliminaries

In this section, we shall present some basic results which will be used in the proof of our
main results.

Lemma 2.1 [9] If u,v are adjacent vertices of G, then for all non-negative integers k,

mk(G) = mk(G−uv)+mk−1(G−u− v),

mk(G) = mk(G− v)+ ∑
w∼v

mk−1(G− v−w),

where the sum ∑w∼v runs over all vertices w adjacent to v.
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100 Li Zou, Hong-Hai Li
Consequently, mk(G) can increase only when edges are added to a graph G and then

the following result has been obtained in [8].

Lemma 2.2 [8] Let G be a graph and e one of its edges. Let G−e be the subgraph obtained
by deleting from G the edge e, but keeping all the vertices of G. Then

ME(G− e)<ME(G).

Recall the definition of a generalized π-transform in [11]. We say Q is a branch of a
connected graph G with root u if Q is a connected induced subgraph of G for which u is
the only vertex in Q that has a neighbor not in Q. Let P and Q be branches of a component
of a graph G with a common root u0, which is also their only common vertex. Assume that
P is a path and u0 has at least one neighbor in G that does not lie on P or Q. Form a graph
from G by relocating the branch Q from u0 to v where v is the other end vertex of the path
P (by deleting edges u0w and adding new edges vw for every vertex w in Q adjacent to u0).
We refer to the resulting graph as a generalized π-transform of G.

Theorem 2.3 [11] If G′ is a generalized π-transform of G, then G′ � G and so ME(G′)>
ME(G).

Note that our result above contains the following [8, Lemma 9] as a special case.

Lemma 2.4 [8] Suppose that G is a connected graph and T an induced subgraph of G
such that T is a tree and T is connected to the rest of G only by a cut vertex v. If T is
replaced by a star of the same order, centered at v, then the matching energy decreases
(unless T is already such a star). If T is replaced by a path, with one end at v, then the
matching energy increases (unless T is already such a path).

Another transformation concerns reducing the number of pendent paths of a graph. This
result had been obtained initially by Gutman [5] and now another proof is given as follows.

Theorem 2.5 Let G be an arbitrary graph and let u and v be two adjacent vertices with
dG(u) ≥ 2. If G1 and G2 are the graphs obtained from G by inserting t vertices into the
edge uv and joining the vertex u to an end vertex of a path Pt , respectively, then G1 � G2.

Proof. Let the path attached at the vertex u in G2 be denoted by P = u0u1u2 · · ·ut , where ut

is a pendent vertex and u0 stands for the vertex u. We consider the vertex-sets and edge-sets
of G1 and G2 to be the same under the obvious correspondence. Particularly, the edge utv
of G1 is identified with the edge uv of G2.

For any k-matching M of G2, if uv /∈ M or ut−1ut /∈ M, then the set of edges in G1

corresponding to M, which we denote by M′, is clearly a matching of G1 (with the same
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On Matching Energy of Bicyclic Graphs 101
number of edges as M). Let M1 denote the set of all matchings M′ of G1 obtained in
this way. Note that for any M′ ∈M1, exactly one of the following holds: the vertex ut is
not covered by M′ (which happens when ut−1ut /∈M and uv /∈M), or ut−1ut ∈M′ (which
happens when ut−1ut ∈ M and uv /∈ M), or vut ∈ M′ and u is not covered by M′ (which
happens when ut−1ut /∈M and uv ∈M).

If ut−1ut ∈ M and uv ∈ M, then we take M′ to be the matching of G1 which equals
{uiui+1 | ut−i−1ut−i ∈M} on E(P) and agrees with M on E(G2)\E(P) (but replacing the
edge uv by vut ). Let M2 denote the set of all matchings M′ of G1 obtained in this way.
Note that for any M′ ∈M2 we have vut ∈M′ and u0u1 ∈M′.

It is readily checked that M1∩M2 = /0 and M1∪M2 consists of all matchings M′ of G1

that satisfies (exactly) one of the following: ut is not covered by M′; ut−1ut ∈M′; vut ∈M′

and either u0 is not covered by M′ or u0u1 ∈M′. Moreover, the correspondence M 7→M′ is
a one-to-one mapping from the set of all matchings of G2 onto M1∪M2. This establishes
the inequality mk(G1)≥ mk(G2) for every positive integer k.

Note that a matching M′ of G1 is not in M1∪M2 if and only if vut ∈M′, u0 is covered
by M′ but u0u1 /∈ M′. If w is a neighbor of u0 in G1 other than u1 – which exists by our
assumption on the neighbors of u0 in G2 – then clearly {vut ,u0w} is a 2-matching of G1

that lies outside M1∪M2; hence m2(G1)> m2(G2). �

Lemma 2.6 [13] Let n = 4k,4k+1,4k+2 or 4k+3. Then

Pn � P2∪Pn−2 � P4∪Pn−4 � ·· · � P2k ∪Pn−2k � P2k+1∪Pn−2k−1

� P2k−1∪Pn−2k+1 � ·· · � P3∪Pn−3 � P1∪Pn−1.

Lemma 2.7 [7] If G1 � G2, then G1∪H � G2∪H, where H is an arbitrary graph.

Applying the lemmas above, we can generalize Lemma 2.6 to the following form, the
union of three paths.

Lemma 2.8 Let r,s, t be non-negative integers with r ≤ s−2. If r is even, then

Pr−2∪Ps+2∪Pt � Pr ∪Ps∪Pt � Pr+1∪Ps−1∪Pt � Pr−1∪Ps+1∪Pt .

Proof. By Lemma 2.6, we have

Pr−2∪Ps+2 � Pr ∪Ps � Pr+1∪Ps−1 � Pr−1∪Ps+1.

By Lemma 2.7 meanwhile, we obtain

Pr−2∪Ps+2∪Pt � Pr ∪Ps∪Pt � Pr+1∪Ps−1∪Pt � Pr−1∪Ps+1∪Pt .

�
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102 Li Zou, Hong-Hai Li
3 Main results

In this section, the matching energy of bicyclic graphs in respective subclasses is
investigated and the ordering of graphs in these subclasses is established.

Any bicyclic graph G can be regarded as obtained from adding some rooted trees on
such a graph of the form θ(r,s, t) or ∞n(r,s). We know any tree can be transformed into a
path by applying a series of generalized π-transforms. By Lemma 2.4, when all such rooted
trees are replaced with corresponding paths with the same order, the matching energy of
G increases. Meanwhile, by Theorem 2.5, its matching energy increases further when a
path is integrated into the cycle. Thus, in terms of discussing maximal matching energy of
bicyclic graphs, it suffices to consider the bicyclic graphs of the form θ(r,s, t) or ∞n(r,s).

First, we shall establish the ordering of bicyclic graphs of the form ∞n(r,n− r + 1),
which contains [5, Lemma 8] as a special case. For the purpose, a result in [11] is listed
here, which will be used in the next proof.

Lemma 3.1 [11] Let m,n be non-negative integers with at least one positive. For any
non-negative integer k ≤ (m+n)/2,

mk(Pn∪Pm) =
r

∑
l=0

(−1)l
(

n+m− k− l
k− l

)
, (2)

where r = min{k,m,n}.

Theorem 3.2 Let n+1 = 4r+ s, where 0≤ s≤ 3 and r ≥ 2. Then

∞n(4,n−3) � ∞n(6,n−5)� ·· · � ∞n(2r,2r+ s)

� ∞n(2r−1,2r+ s+1)� ·· · � ∞n(5,n−4)� ∞n(3,n−2).

Proof. Consider the bicyclic graph G = ∞n(p,q) on n = p+ q− 1 vertices. Without loss
of generality, assume that p ≥ q. Set G1 = ∞n(p+ 1,q− 1) and G2 = ∞n(p+ 2,q− 2).
Assume that the common vertex of two cycles in G (resp. G1,G2) is v (resp. v′,v′′).

By Lemma 2.1, we have

mk(G) = mk(G− v)+ ∑
u∼v

mk−1(G− v−u)

= mk(Pp−1∪Pq−1)+2mk−1(Pp−2∪Pq−1)+2mk−1(Pp−1∪Pq−2);

mk(G1) = mk(G1− v′)+ ∑
u∼v′

mk−1(G1− v′−u)

= mk(Pp∪Pq−2)+2mk−1(Pp∪Pq−3)+2mk−1(Pp−1∪Pq−2);

mk(G2) = mk(G2− v′′)+ ∑
u∼v′′

mk−1(G− v′′−u)

= mk(Pp+1∪Pq−3)+2mk−1(Pp+1∪Pq−4)+2mk−1(Pp∪Pq−3).

International Journal of Graph Theory and its Applications 1 (2015) 97–110



On Matching Energy of Bicyclic Graphs 103
Next we shall discuss the variation of k-matching numbers of G1 and G2 perturbed from
the graph G. First, consider what happens to G1 in terms of the number of k-matchings for
any k. Applying Lemma 3.1, we have

mk(G)−mk(G1)

= mk(Pp−1∪Pq−1)+2mk−1(Pp−2∪Pq−1)−mk(Pp∪Pq−2)−2mk−1(Pp∪Pq−3)

=
r3

∑
l=0

(−1)l
(

p+q− k− l−2
k− l

)
+2

r4

∑
l=0

(−1)l
(

p+q− k− l−2
k− l−1

)
−

r1

∑
l=0

(−1)l
(

p+q− k− l−2
k− l

)
−2

r2

∑
l=0

(−1)l
(

p+q− k− l−2
k− l−1

)
,

where r1 = min{k,q− 2, p}, r2 = min{k− 1,q− 3, p}, r3 = min{k,q− 1, p− 1}, r4 =

min{k−1,q−1, p−2}. We shall distinguish it in three cases according to the value of k.

Case 1. k ≤ q−2. In this case, it is easy to see that r1 = r3 = k and r2 = r4 = k−1. Thus
mk(G)−mk(G1) = 0.

Case 2. k = q−1. In this case, r1 = r3−1 = q−2 and r2 = r4−1 = q−3. By a straight
calculation, we have

mk(G)−mk(G1)

= (−1)q−1
(

p+q− k− (q−1)−2
k− (q−1)

)
+2(−1)q−2

(
p+q− k− (q−2)−2

k− (q−2)−1

)
= (−1)q−1 +2(−1)q−2

= (−1)q.

Case 3. k ≥ q. Note that then r1 = r3− 1 = q− 2, r2 = q− 3 and either r4 = q− 2 when
p = q or r4 = q−1 when p> q. Thus if p> q, we have

mk(G)−mk(G1)

= (−1)q−1
(

p+q− k− (q−1)−2
k− (q−1)

)
+2(−1)q−1

(
p+q− k− (q−1)−2

k− (q−1)−1

)
+2(−1)q−2

(
p+q− k− (q−2)−2

k− (q−2)−1)

)
= (−1)q−1

(
p− k−1
k−q+1

)
+2(−1)q−1

(
p− k−1

k−q

)
−2(−1)q−1

(
p− k

k−q+1

)
= (−1)q

[
2
(

p− k
k−q+1

)
−
(

p− k−1
k−q+1

)
−2
(

p− k−1
k−q

)]
= (−1)q

(
p− k−1
k−q+1

)
;
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104 Li Zou, Hong-Hai Li
and if p = q, we have mk(G) = mk(G1) = 0 because the matching number (the size of
maximum matching) of a graph on n vertices is not more than bn/2cwhile b 2q−1

2 c= q−1<
q≤ k.

From the cases discussed above, it follows immediately that for any k, mk(G)−mk(G1)

is (−1)q times a non-negative integer which is not identically zero (at least for the case
of k = q− 1). Therefore, we obtain that ∞n(p,q) � ∞n(p+ 1,q− 1) if q is even and
∞n(p+1,q−1)� ∞n(p,q) if q is odd.

Finally, we shall show how k-matchings number of G2 changes in a similar manner,
which enables us to know what happens to k-matchings number of a graph ∞n(p,q) when
perturbed while the parity of the length of the shorter cycle keeps unchanged. Note that

mk(G)−mk(G2)

= mk(Pq−1∪Pp−1)+2mk−1(Pq−2∪Pp−1)+2mk−1(Pq−1∪Pp−2)

−mk(Pq−3∪Pp+1)−2mk−1(Pq−4∪Pp+1)−2mk−1(Pq−3∪Pp)

=
r4

∑
l=0

(−1)l
(

p+q− k− l−2
k− l

)
+2

r5

∑
l=0

(−1)l
(

p+q− k− l−2
k− l−1

)
+2

r6

∑
l=0

(−1)l
(

p+q− k− l−2
k− l−1

)
−

r1

∑
l=0

(−1)l
(

p+q− k− l−2
k− l

)
−2

r2

∑
l=0

(−1)l
(

p+q− k− l−2
k− l−1

)
−2

r3

∑
l=0

(−1)l
(

p+q− k− l−2
k− l−1

)
,

where r1 = min{k,q− 3, p+ 1}, r2 = min{k− 1,q− 4, p+ 1}, r3 = min{k− 1,q− 3, p},
r4 = min{k,q−1, p−1}, r5 = min{k−1,q−2, p−1}, r6 = min{k−1,q−1, p−2}. We
also distinguish it in cases according to the value of k.

Case 1. k ≤ q− 3. In this case, it is easy to see that r1 = r4, r2 = r5 and r3 = r6. So
mk(G)−mk(G2) = 0.

Case 2. k = q−2. Then r1 = r4−1 = q−3, r2 = r5−1 = q−4 and r3 = r6 = q−3. Thus

mk(G)−mk(G2)

= (−1)q−2
(

p+q− k− (q−2)−2
k− (q−2)

)
+2(−1)q−3

(
p+q− k− (q−3)−2

k− (q−3)−1

)
= (−1)q−2−2(−1)q−2

= (−1)q−1.

Case 3. k = q−1. Then r1 = r4−2 = q−3, r2 = r5−2 = q−4 and r3 = r6−1 = q−3.
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Thus

mk(G)−mk(G2)

= (−1)q−1
(

p+q− k− (q−1)−2
k− (q−1)

)
+(−1)q−2

(
p+q− k− (q−2)−2

k− (q−2)

)
+4(−1)q−2

(
p+q− k− (q−2)−2

k− (q−2)−1

)
+2(−1)q−3

(
p+q− k− (q−3)−2

k− (q−3)−1

)
= (−1)q−1 +(−1)q−2(p−q+1)+4(−1)q−2 +2(−1)q−3(p−q+2)

= (p−q)(−1)q−1.

Case 4. k≥ q. Then r1 = r4−2= q−3, r2 = r5−2= q−4, r3 = q−3 and either r6 = q−2
if p = q or r6 = q−1 if p> q. Thus if p> q, we have

mk(G)−mk(G2)

= (−1)q−1
(

p+q− k− (q−1)−2
k− (q−1)

)
+(−1)q−2

(
p+q− k− (q−2)−2

k− (q−2)

)
+2(−1)q−2

(
p+q− k− (q−2)−2

k− (q−2)−1

)
+2(−1)q−3

(
p+q− k− (q−3)−2

k− (q−3)−1

)
+2(−1)q−1

(
p+q− k− (q−1)−2

k− (q−1)−1

)
+2(−1)q−2

(
p+q− k− (q−2)−2

k− (q−2)−1

)
= (−1)q−1

[
2
(

p− k
k−q+2

)
−2
(

p− k−1
k−q+1

)
−
(

p− k−1
k−q+2

)]
= (−1)q−1

(
p− k−1
k−q+2

)
;

and if p = q, we have mk(G) = mk(G2) = 0 because, as mentioned before, the matching
number of a graph on n vertices is not more than bn/2c.

From the arguments above, we have that ∞n(p,q) � ∞n(p+ 2,q− 2) if q is odd and
∞n(p+2,q−2)� ∞n(p,q) if q is even. �

Further, the graph in B1
n with maximum matching energy is obtained in the following.

Theorem 3.3 For any G ∈ B1
n with n ≥ 8, ∞n(4,n− 4) � G with equality holding if and

only if G∼= ∞n(4,n−4).

Proof. Without loss of generality, assume G ∈ B1
n is of the form ∞n(p,q). We distinguish

it according to the value of dG, the distance between the cycles Cp and Cq in G.

Case 1. dG ≥ 1. Choose two edges u1u2 and v1v2 in the cycles Cp and Cq of G, respectively,
with the degrees of both u1 and v1 being 3. Meanwhile, denote by u′1v′1 the unique edge
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between the cycles C4 and Cn−4 of ∞n(4,n−4), and u′1u′2 (resp. v′1v′2) an edge in the cycle
C4 (resp. Cn−4) of ∞n(4,n−4).

For convenience, let G = ∞n(p,q) (p ≥ q), G′ = ∞n(4,n− 4) and r = n− p− q. By
Lemma 2.1, we have

mk(G) = mk(G−u1u2)+mk−1(G−u1−u2)

= mk(G−u1u2− v1v2)+mk−1(G−u1u2− v1− v2)

+mk−1(G−u1−u2− v1v2)+mk−2(G−u1−u2− v1− v2)

= mk(Pn)+mk−1(Pp+r ∪Pq−2)

+mk−1(Pq+r ∪Pp−2)+mk−2(Pq−2∪Pr ∪Pp−2)

and

mk(G′) = mk(G′−u′1u′2)+mk−1(G′−u′1−u′2)

= mk(G′−u′1u′2− v′1v′2)+mk−1(G′−u′1u′2− v′1− v′2)
+mk−1(G′−u′1−u′2− v′1v′2)+mk−2(G′−u′1−u′2− v′1− v′2)

= mk(Pn)+mk−1(P4∪Pn−6)+mk−1(P2∪Pn−4)+mk−2(P2∪Pn−6). (3)

Thus

mk(G′)−mk(G) = mk−1(P4∪Pn−6)+mk−1(P2∪Pn−4)

+mk−2(P2∪Pn−6)−mk−1(Pp+r ∪Pq−2)

−mk−1(Pq+r ∪Pp−2)−mk−2(Pq−2∪Pr ∪Pp−2).

When p 6= 4, by Lemma 2.6, we have

P2∪Pn−4 � Pp+r ∪Pq−2,

P4∪Pn−6 � Pq+r ∪Pp−2,

P2∪Pn−6 � Pq−2∪Pr ∪Pp−2. (4)

This implies that for all k,

mk−1(P2∪Pn−4) ≥ mk−1(Pp+r ∪Pq−2),

mk−1(P4∪Pn−6) ≥ mk−1(Pq+r ∪Pp−2),

mk−2(P2∪Pn−6) ≥ mk−2(Pq−2∪Pr ∪Pp−2).

Thus mk(G′)−mk(G) ≥ 0 for all k, and the equality holds for all k if and only if all the
inequalities above become equalities for all k. By Lemma 2.6, it follows that P2 ∪Pn−4 ∼=
Pp+r ∪Pq−2, P4∪Pn−6 ∼= Pq+r ∪Pp−2 and P2∪Pn−6 ∼= Pq−2∪Pr ∪Pp−2. The first one holds
if and only if q = 4 and in this case the last one holds if and only if r = 0. As a result,
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the middle one holds also. Therefore, G′ � G and G ∼= G′ if and only if q = 4 and r = 0,
namely G∼= ∞n(4,n−4) = G′.

When p = 4, then q = 3,4 due to p≥ q≥ 3.

If q = 3, then

mk(G′)−mk(G) = mk−1(P4∪Pn−6)+mk−1(P2∪Pn−4)

+mk−2(P2∪Pn−6)−mk−1(P1∪Pn−3)

−mk−1(P2∪Pn−4)−mk−2(P1∪P2∪Pn−7)

= mk−1(P4∪Pn−6)−mk−1(P1∪Pn−3)

+mk−2(P2∪Pn−6)−mk−2(P1∪P2∪Pn−7).

Because P4∪Pn−6 � P1∪Pn−3 and P2∪Pn−6 � P1∪P2∪Pn−7, we have G′ � G.

Now assume that q = 4. If n = 8, obviously G∼= ∞8(4,4) = G′. If n≥ 9, we have

mk(G′)−mk(G) = mk−1(P4∪Pn−6)+mk−1(P2∪Pn−4)

+mk−2(P2∪Pn−6)−mk−1(P2∪Pn−4)

−mk−1(P2∪Pn−4)−mk−2(P2∪P2∪Pn−8)

= mk−1(P4∪Pn−6)+mk−2(P2∪Pn−6)

−mk−1(P2∪Pn−4)−mk−2(P2∪P2∪Pn−8)

= mk−1(P2∪P2∪Pn−6)+mk−2(Pn−6)+mk−2(P2∪P2∪Pn−8)

+mk−3(P2∪Pn−9)−mk−1(P2∪P2∪Pn−6)

−mk−2(P2∪Pn−7)−mk−2(P2∪P2∪Pn−8)

= mk−2(Pn−6)+mk−3(P2∪Pn−9)

−mk−2(P2∪Pn−8)−mk−3(P2∪Pn−9)

= mk−2(Pn−6)−mk−2(P2∪Pn−8)

= mk−3(Pn−9).

Note that mk−3(Pn−9) ≥ 0 for all k and the inequality holds strictly at least for k = 3 as
m0(Pn−9) = 1. This means that G′ � G in this case.

Therefore, in the case of dG ≥ 1, G′ � G with equality holding if and only if G∼= G′.

Case 2. dG = 0. By the same way, consider ∞n(p,q) with p+ q = n+ 1 and by Lemma
2.1, we have

mk(∞n(p,q)) = mk(Pn)+mk−1(Pp−1∪Pq−2)+mk−1(Pp−2∪Pq−1).
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Then together with the expression (3) of mk(∞n(4,n−4)), we get

mk(∞n(4,n−4))−mk(∞n(p,q)) = mk−1(P4∪Pn−6)+mk−1(P2∪Pn−4)

+mk−2(P2∪Pn−6)−mk−1(Pp−1∪Pq−2)

−mk−1(Pp−2∪Pq−1)

≥ mk−2(P2∪Pn−6),

where the last inequality can be proved easily by Lemma 2.6. Obviously ∞n(4,n− 4) �
∞n(p,q) in this case since there exists at least a strict inequality. �

Finally, we tend to establish the ordering of bicyclic graphs in the second class B2
n, of

which the result [5, Lemma 9] is a special case.

Theorem 3.4 For any bicyclic graph G ∈B2
n with n≥ 5,

ME(G)≤ME(θ(0,2,n−4)),

with equality if and only if G ∼= θ(0,2,n− 4). More precisely, if r,s, t are integers with
t = max{r,s, t}, then

(a) if s≥ 2 , r is even and r ≤ t−2, then

θ(r−2,s, t +2)� θ(r,s, t)� θ(r+1,s, t−1)� θ(r−1,s, t +1). (5)

(b) θ(0,2,n−4)� θ(r,s, t) for s = 0,1.

Proof. Let G be an arbitrary graph chosen from B2
n. Without loss of generality, assume

that G is of the form θ(r,s, t), which can be viewed as obtained by fusing two triples of
pendent vertices v0,u0,w0 and vr+1,us+1,wt+1 of three paths Pr+2 = v0v1 · · ·vrvr+1, Ps+2 =

u0u1 · · ·usus+1 and Pt+2 = w0w1 · · ·wtwt+1 to two vertices, say v and u, respectively. By
Lemma 2.1, we have

mk(G) = mk(G− vu1)+mk−1(G− v−u1)

= mk(G− vu1−uus)+mk−1(G− vu1−u−us)

+mk−1(G− v−u1−uus)+mk−2(G− v−u1−u−us)

= mk(Ps∪Cr+t+2)+2mk−1(Ps−1∪Pr+t+1)+mk−2(Ps−2∪Pr ∪Pt).

By Lemma 2.8, it follows directly that if s−2≥ 0 and r is even, then

Ps−2∪Pr−2∪Pt+2 � Ps−2∪Pr ∪Pt � Ps−2∪Pr+1∪Pt−1 � Ps−2∪Pr−1∪Pt+1

and so the assertion (5) holds.
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Now consider the graphs θ(r,s, t) for the cases of s ≤ 1. For convenience, let G3 =

θ(r,1, t) and G4 = θ(r′,0, t ′) with G4 6= θ(0,2,n− 4). Suppose that vu1u is one of three
paths in G3, with the degrees of v and u being 3. Similarly, let v′u′ be the edge in G4 with
d(v′) = d(u′) = 3. By Lemma 2.1, we have

mk(G3) = mk(G3−u1)+mk−1(G3−u1− v)+mk−1(G3−u1−u)

= mk(Cn−1)+2mk−1(Pn−2)

= mk(Pn−1)+mk−1(Pn−3)+2mk−1(Pn−2),

mk(G4) = mk(G4− v′u′)+mk−1(G4− v′−u′)

= mk(Cn)+mk−1(Pr′ ∪Pt ′)

= mk(Pn−1)+2mk−1(Pn−2)+mk−1(Pr′ ∪Pt ′).

It is easy to note that G4 �G3 because mk(G4)−mk(G3) = mk−1(Pr′ ∪Pt ′)−mk−1(Pn−3)≥
0 for all k ≥ 1 as by Lemma 2.6, Pr′ ∪ Pt ′ � Pn−3 ∪ P1, where r′ + t ′ = n− 2. Further,
the assertion (b) can be completed once θ(0,2,n− 4) � G4 (= θ(r′,0, t ′)) holds. Set H =

θ(0,2,n−4) for convenience. Assume that vu1u2u is the path in H with d(v) = d(u) = 3.
By Lemma 2.1, we have

mk(H) = mk(H−uv)+mk−1(H−u− v)

= mk(H−uv−u1u2)+mk−1(H−uv−u1−u2)+mk−1(H−u− v)

= mk(Pn)+mk−1(Pn−2)+mk−1(P2∪Pn−4)

= mk(Pn−1)+2mk−1(Pn−2)+mk−1(P2∪Pn−4).

So
mk(H)−mk(G4) = mk−1(P2∪Pn−4)−mk−1(Pr′ ∪Pt ′).

Therefore H � G4 since P2∪Pn−4 � Pr′ ∪Pt ′ by Lemma 2.6.
Combining two arguments above, it follows immediately that for any G ∈ B2

n,
θ(0,2,n− 4) � G, with equality if and only if G ∼= θ(0,2,n− 4), and so the main result
holds. �

Theorem 3.5 [9] ME(θ(0,2,n−4))<ME(∞n(4,n−4)) for n≥ 10 and n = 8, exception-
ally ME(θ(0,2,n−4)) = ME(∞n(4,n−4)) for n = 9.

From Theorems 3.3 and 3.4, we know that the maximal graphs in B1
n and B2

n are
∞n(4,n−4) and θ(0,2,n−4) respectively. Meanwhile by Theorem 3.5, we conclude with
the following result, which can also be found in [9].

Theorem 3.6 Let G ∈ Bn with n ≥ 10 and n = 8. Then ME(G) ≤ ME(∞n(4,n− 4)),
with equality if and only if G ∼= ∞n(4,n−4). Exceptionally, when n = 9, ∞n(4,n−4) and
θ(0,2,n−4) have equivalent matching energy and both are maximal graphs in Bn.
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